
59

Scalable Bandwidth Shaping Scheme via Adaptively Managed
Parallel Heaps in Manycore-Based Network Processors

TAEHYUN KIM, JONGBUM LIM, JINKU KIM, and WOO-CHEOL CHO, Sogang University
EUI-YOUNG CHUNG, Yonsei University
HYUK-JUN LEE, Sogang University

Scalability of network processor-based routers heavily depends on limitations imposed by memory accesses
and associated power consumption. Bandwidth shaping of a flow is a key function, which requires a token
bucket per output queue and abuses memory bandwidth. As the number of output queues increases, manag-
ing token buckets becomes prohibitively expensive and limits scalability. In this work, we propose a scalable
software-based token bucket management scheme that can reduce memory accesses and power consumption
significantly. To satisfy real-time and low-cost constraints, we propose novel parallel heap data structures
running on a manycore-based network processor. By using cache locking, the performance of heap processing
is enhanced significantly and is more predictable. In addition, we quantitatively analyze the performance
and memory footprint of the proposed software scheme using stochastic modeling and the Lyapunov central
limit theorem. Finally, the proposed scheme provides an adaptive method to limit the size of heaps in the
case of oversubscribed queues, which can successfully isolate the queues showing unideal behavior. The pro-
posed scheme reduces memory accesses by up to three orders of magnitude for one million queues sharing a
100Gbps interface of the router while maintaining stability under stressful scenarios.

CCS Concepts: � Networks → Routers; � Computing methodologies → Massively parallel algo-
rithms; � Computer systems organization → Multicore architectures;

Additional Key Words and Phrases: Manycore, network processor, token bucket, heap tree, adaptive control,
stochastic modeling

ACM Reference Format:
Taehyun Kim, Jongbum Lim, Jinku Kim, Woo-Cheol Cho, Eui-Young Chung, and Hyuk-Jun Lee. 2017.
Scalable bandwidth shaping scheme via adaptively managed parallel heaps in manycore-based network
processors. ACM Trans. Des. Autom. Electron. Syst. 22, 4, Article 59 (May 2017), 26 pages.
DOI: http://dx.doi.org/10.1145/3065926

1. INTRODUCTION

To fulfill rapidly growing performance requirements, routers employ a network pro-
cessor integrating tens or hundreds of processor cores. A manycore-based network
processor performs packet processing, buffering, and scheduling. Its tight processing
budget requires each core to complete its packet processing in thousands to tens of

This work was supported by ICT R&D program of MSIP/IITP. [B0101-16-0661, The research and development
of the self-adaptive software framework for various IoT devices].
In addition, this work was supported by the National Research Foundation of Korea (NRF) grant funded by
the Korean government (MSIP; 2016 R1A2B4011799).
Authors’ addresses: T. Kim, J. Lim, J. Kim, W.-C. Cho, and H.-J. Lee (corresponding author), Department
of Computer Science and Engineering, Sogang University, Seoul, Republic of Korea; emails: {taebang86,
limjongbum}@gmail.com, {ecl0038, woocheolc, hyukjunl}@sogang.ac.kr; E.-Y. Chung, Department of Electri-
cal and Electronic Engineering, Yonsei University, Seoul, Republic of Korea; email: eychung@yonsei.ac.kr.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 1084-4309/2017/05-ART59 $15.00
DOI: http://dx.doi.org/10.1145/3065926

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 59, Pub. date: May 2017.

http://dx.doi.org/10.1145/3065926
http://dx.doi.org/10.1145/3065926

59:2 T. Kim et al.

thousands of clock cycles while it accesses various internal and external re-
sources [Cisco 2011, 2014]. A major challenge in network processor design is to build
a scalable high-performance system that can process several hundred Gbps of packet
streams. This requires the use of bleeding edge memory technology, which results in
huge memory bandwidth and power consumption and often limits the scalability of the
system.

In the near future, high-performance routers will buffer and schedule millions of
network flows, for example, TCP or UDP flow. To buffer those flows and provide differ-
entiated quality of service (QoS) for each flow, a router maintains millions of output
queues. Recent edge routers support up to 512K queues and the number scales with
increasing interface bandwidth [Cisco 2011, 2014] to reduce processing cost per flow.

Routers implement various QoS functions to provide differentiated services for net-
work flows. QoS functions include latency guarantee, minimum bandwidth guarantee,
rate limiting (or bandwidth shaping), and bandwidth sharing for different flows. Rate
limiting is one of the major functions that limits the bandwidth of a flow at the input
and output side of routers. To protect a router from a misbehaving network flow, it can
perform access control, that is, rate limiting, based on the input bandwidth of an in-
coming flow. In addition, a router uses rate limiting to smooth the traffic scheduled out
of itself so that downstream routers do not overflow. There exist both similarity and dif-
ferences between rate limiting and various scheduling algorithms, such as deficit round
robin (DRR) [Shreedhar and Varghese 1995], weighted fair queueing (WFQ) [Parekh
and Gallager 1993], or worst-case fair weighted fair queueing (WF2 Q) [Bennett and
Zhang 1996]. First, both DRR and WFQ do not provide bandwidth shaping (or rate
limiting) but do guarantee minimum bandwidth or provide bandwidth sharing. On
the other hand, WF2 Q can limit the bandwidth of a flow to a predetermined value.
However, WF2 Q requires inserting the new schedule time of a queue into a sorted tree,
which is costly and has a time complexity of O(logN). For this reason, rate limiting
is often implemented as a separate function using a token bucket (which has a time
complexity of O(1)) in routers and per-queue-based rate limiting is supported by the
router operating system. For instance, CISCO ASR 9000 supports 512K queues, each
of which is shaped by a token bucket [Cisco 2011].

In slightly different contexts, several researchers propose rate-limiting schemes for
NICs of data center servers. However, they either guarantee only minimum bandwidth
or do not address the scalability issue. Elastic switch guarantees minimum bandwidth
of network flows in the data center context using a programming hypervisor [Popa et al.
2013]. However, it does not provide rate limiting. SENIC proposes scalable NIC for
end-host rate limiting [Radhakrishnan et al. 2014]. It uses WF2 Q to implement 10,000
rate limiters for one-level scheduling entities or to implement hierarchical bandwidth
sharing in which virtual machines (VMs) are sharing interface bandwidth. Each VM’s
bandwidth is rate limited but flows within a VM are not rate limited. Again, WF2 Q
requires per-packet sorting, leading to a scalability issue, and hierarchical bandwidth
sharing does not guarantee per-flow rate limiting.

Traditionally, rate-limiting network flows in routers or switches are performed us-
ing token buckets [Giladi 2008; Franklin et al. 2003; Varghese 2010]. Recently, EyeQ
proposed network performance isolation using parallel token buckets for data center
applications [Jeyakumar et al. 2013]. It can implement 10,000 rate limiters using to-
ken buckets. However, the number of rate limiters is limited due to an expensive token
refill mechanism. To maintain bandwidth shaping precisely for millions of queues, we
need one token bucket for each queue. A token bucket is filled periodically to guaran-
tee a predetermined bandwidth. A token fill procedure requires a read-modify-write
operation on memory for a token update. Frequent token fills reduce the burstiness of
traffic scheduled out of routers because the amount of added tokens is small for each

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 59, Pub. date: May 2017.

Scalable Bandwidth Shaping Scheme via Adaptively Managed Parallel Heaps in Manycore 59:3

fill. However, it increases memory bandwidth and power consumption. For instance, if
we fill token buckets every 10μs (e.g., adding 1B per 10 microseconds shapes a queue
to 100KB/s) and there are one million queues, we need to fill one hundred billion times
per second. This becomes worse as we increase the number of queues supported in
the network processor to reduce the per-flow processing cost. As the token bucket in-
formation is stored in off-chip DRAM parts due to its size, read-modify-writes caused
by token bucket updates for millions of queues consume prohibitively large memory
bandwidth and power.

Developing a scalable high-performance token bucket management scheme presents
several challenges. First, to support the increasing number of queues, a token fill
mechanism should be scalable in terms of memory bandwidth and power consumption.
Second, the cost of token fill should be small enough not to introduce any major perfor-
mance degradation in packet processing. Third, the scheme should be flexible to deal
with a large dynamic range for the number of queues and bandwidth and be able to
deal with harsh corner cases that can affect the reliability and availability of routers.

In this article, we propose a scalable software solution to the token bucket fill prob-
lem, which is based on event-driven token fills managed with parallelized heaps run-
ning on many processor cores of the network processor. Major contributions of our work
are summarized as follows.

—We propose a scalable software method for the token fill problem, which does not
periodically fill token buckets. Instead, it computes a reschedule time for a queue
that runs out of tokens and reschedules the queue at the time when its token bucket
becomes positive. This can reduce memory accesses significantly by up to three
orders of magnitude. In addition, power reduction can be achieved by the same level
of magnitude, which is crucial in the modern network processor design.

—To process tens of millions of reschedule events per second under real-time and
low-cost constraints, we propose novel parallelized heaps mapped on manycores
in the network processor. By allocating these data structures as arrays and using
cache locking [Vera et al. 2003; Puaut and Decotigny 2002; Campoy et al. 2001],
the performance of event processing is enhanced significantly and more predictable,
which is crucial for real-time processing.

—We quantitatively analyze the performance and memory footprint of the proposed
software scheme using stochastic modeling. More specifically, we use the Lyapunov
central limit theorem to accurately estimate the performance and cost of a large
number of reschedule events to predict the behavior of the system under various
different operating conditions.

—The proposed scheme provides an adaptive management of reschedule threshold
values to limit the number of reschedule events in the case of severely oversubscribed
queues. This can successfully isolate the queues showing unideal behavior.

The proposed scheme reduces memory accesses by up to three orders of magnitude for
one million queues sharing a 100Gbps interface in routers. In addition, the proposed
scheme and modeling technique can apply to a general class of problems in which
periodic resource accesses consuming power and memory bandwidth can be translated
into independently parallelized sorted events.

2. BACKGROUND

2.1. Baseline Network Processor Architecture

Our proposed software scheme runs on a network processor. The baseline network
processor architecture includes hundreds of processor cores and accelerator blocks
that speed up specific network functions, for example, scheduling. To store packets,

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 59, Pub. date: May 2017.

59:4 T. Kim et al.

forwarding tables, and attributes of network flows, it is equipped with external memo-
ries, such as DRAM, SRAM, and TCAM.

There are several commercial manycore-based network processors available in the
market [Tilera 2016; C. Networks 2013; Intel 2005]. Our proposed scheme may use
off-the-shelf multicore- or manycore-based network processors—for example, Tilera,
Cavium, and Intel—as baseline architectures. They have up to hundreds of processor
cores for fast packet processing and some of their processing power can be allocated to
perform token bucket processing. For instance, the Tilera NPS400 network processor
has 256 cores and supports 24 channels of 16b DDR3/4 DRAMs [Tilera 2016]. The
Cavium OCTEON III network processor has 48 cores and supports 4 channels of DDR3
DRAMs running at 1066MHz or DDR4 DRAMs running at 1200MHz [C. Networks
2013]. The CISCO flow processor employs 40 processor cores [Cisco 2014].

These network processors are equipped with dedicated components to speed up some
functions of network processing. For instance, high-speed packet scheduling or high-
speed destination lookup can be offloaded to dedicated components. The token bucket
fill process can be implemented in a dedicated component because its basic operation is
simple enough to be implemented as the read-modify-write of a token bucket value. In
general, the disadvantages of dedicated components are that its design should be simple
enough to be implemented in hardware and is not flexible with respect to changing input
requirements or environments. For instance, the same network processor can be used
for both core and edge routers where the number of supported queues are drastically
different. If the execution time of a portion of packet processing depends on the number
of queues, the dedicated hardware should be designed to cover the worst-case queue
number, whereas the software solution can easily trade the supported queue number
for the number of features processed in packet processing.

In our work, we use the baseline network processor architecture mentioned earlier
and compare our software-based approach with the periodic token fill mechanism using
a dedicated component.

2.2. Bandwidth Shaping via Token Bucket Management in Network Processor

Modern routers shape (or limit) the bandwidth of flows because many flows share an
interface, for example, 100Gbps Ethernet. A flow is mapped on an output queue in
routers and the bandwidth of a flow is shaped using a token bucket assigned to the
associated queue. This packet flow handling is performed by a network processor of the
routers. Figure 1 shows a packet flow inside a network processor. An incoming packet is
stored in the packet buffer, which is indicated by (1) in the figure. A packet is assigned
to a processor core, input processed, for example, destination lookup, and stored into an
output queue. When the output queue containing the packet is scheduled, the packet
is output processed by a core. These input and output processings are shown by (2). At
the end of output processing, the token bucket of an associated queue is updated based
on the scheduled packet size and the packet gets sent out of the router, marked in the
figure by (3) and (4), respectively.

A token bucket is a simple mechanism used to provide bandwidth shaping of a packet
flow [Varghese 2010]. Whenever a packet is scheduled, tokens equivalent to the size
of a packet are deducted from the token bucket. To limit bandwidth, a predetermined
amount of tokens are regularly added to a token bucket. Two key parameters of a
token bucket mechanism, committed information rate (CIR) and committed burst excess
(CBE), are discussed in Franklin et al. [2003]. CIR is a long-term average bandwidth
guaranteed to a traffic flow. If Bbytes are added to the token bucket for a queue every T
seconds, CIR becomes B

T bytes/sec. CBE is a permitted short-term burst over the CIR.
It refers to the maximum amount of tokens accumulated per flow (or queue), which
limits the burst of traffic scheduled out of an associated queue.

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 59, Pub. date: May 2017.

Scalable Bandwidth Shaping Scheme via Adaptively Managed Parallel Heaps in Manycore 59:5

Fig. 1. Conventional system performs (1) storing a packet in a packet buffer, (2) assigning a packet to a core
for input and output processing, (3) updating a token bucket after scheduling, and (4) sending out a packet.
(5) and (6) are new additional processing by the proposed scheme, which includes insertion and deletion
operation with heap trees.

In a conventional system, a token bucket update happens in three cases: initial token
fills, periodic token fills, and token updates on scheduling packets. First, initial token
fill occurs when the system is booted up to configure each queue with its predetermined
queue bandwidth. Second, periodic fill occurs to fill tokens regularly to provide correct
bandwidth. Finally, when a packet is scheduled out of a queue, tokens equivalent to
the size of a scheduled packet are deducted.

Physically, as shown in Figure 1, token buckets and associated attributes are stored
in external memories, for example, DRAM, because the amount of data does not fit
in on-chip memories. In the network processor, parallel cores process (or schedule)
packets and they access token buckets and attributes for update. Conventional token
bucket management can be implemented in hardware or software.

The formula for the token bucket update upon a packet schedule and upon a token
fill are shown in Equations (2) and (3), respectively.

�TBi = (Tnow − Tlui) × BWi (1)

TBi = min(TBi − Psize + �TBi, TBi) (2)
TBi = min(TBi + �TBi, TBi) (3)

In Equation (1), Tnow and Tlui are current time and last token update time for queue
i, respectively. BWi represents the bandwidth of queue i, which is determined by
CIR. Last update time is used to record the last time when the token bucket was
updated [Franklin et al. 2003]. By subtracting the last update time (Tlui) from current
time (Tnow) and multiplying that with BWi, additional tokens (�TBi) that should have
been accumulated in bytes since the last update time can be calculated and added to
the token bucket.

In Equations (2) and (3), TBi and TBi represent the value of a current token bucket
for queue i and its maximum value, respectively, and Psize represents a packet size.
TBi is determined by CBE to limit the maximum burstiness. The difference between
Equations (2) and (3) is Psize, as it represents a case in which a packet schedule causes
a token update.

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 59, Pub. date: May 2017.

59:6 T. Kim et al.

2.3. Related Work

Generic token bucket management schemes for network processors to guarantee QoS
requirements are introduced in various texts [Giladi 2008; Franklin et al. 2003]. More
advanced token bucket management methods are further discussed in Tang and Tai
[1999], Park and Choi [2003], and Kidambi et al. [2000]. In Tang and Tai [1999], op-
timization of maximum burstiness and fill rates of token buckets are discussed to
minimize the packet delay and queueing. In Park and Choi [2003], Kidambi et al.
[2000], Aeron [2010], and AlQahtani [2015], adaptive/dynamic token bucket manage-
ment schemes are presented. In Park and Choi [2003] and Kidambi et al. [2000], they
attempt to dynamically change token bucket rates to provision fair shares under the
case of oversubscribed or undersubscribed links. In Aeron [2010], fuzzy logic is used to
vary token rate smoothly to improve bandwidth utilization. In AlQahtani [2015], they
dynamically change the token rate to maximize the bandwidth utilization of heteroge-
neous wireless networks. In Chakravarthi and Shilpa [2013], multiple token buckets
are used to improve bandwidth utilization in distributed networks. However, these
prior token bucket management schemes do not address the scalability issue of token
buckets in terms of memory bandwidth and power consumption but discuss how to
assign token rates dynamically to maximize bandwidth utilization.

Manycore-based network processor design for routers has been an active research
area. State-of-the-art designs are discussed in Cisco [2011, 2014], Tilera [2016], C.
Networks [2013], and Intel [2005]. Intel IXP in Intel [2005] uses cores as pipelined
computing elements to process a packet, whereas network processors in Cisco [2011,
2014], Tilera [2016], and C. Networks [2013] use tens to hundreds of cores as parallel
computing elements, which provide more flexible programmability than Intel [2005].
Manycores in network processors perform packet processing, buffering, and schedul-
ing, whereas some time-critical functions are offloaded to IP blocks or accelerators.
While these works focus on the hardware structure of a network processor, others
attempt to optimize the performance and cost of packet processing tasks mapped on
manycores of the network processor [Huang and Wolf 2008; Ennals et al. 2005; Han
et al. 2010]. In Huang and Wolf [2008], both parallel and pipelined design are mod-
eled using queueing theory and their performances are compared under various traffic
conditions. Ennals et al. [2005] propose a compiler technique that automatically par-
titions a network application into pipelined and parallel tasks mapped on a network
processor. In Han et al. [2010], parallelized packet processing tasks are mapped on a
GPU. Load balancing on multicore processors to optimize power consumption is dis-
cussed in Jeon et al. [2010]. Although these previous works discuss mapping network
application tasks and load balancing them, none address the scalability issue of token
bucket management.

3. PROPOSED SCHEMES

3.1. Scalable Event-Driven Token Fill Scheme with Parallelized Heaps

3.1.1. Event-Driven Token Fill. To avoid periodic fills and reduce power consumption and
memory accesses, we propose a software method to perform event-driven token fills.
The event-driven token fill refers to a token fill mechanism in which we update a token
bucket only when there is an opportunity, such as a packet schedule.

In a conventional method, if a token bucket becomes negative due to a packet sched-
ule, a queue becomes unschedulable. The queue becomes schedulable again when the
next periodic fill happens and makes the token bucket positive.

One of the key ideas in the proposed method is to avoid periodic token fills and
perform a token fill only when it is absolutely needed. As was pointed out earlier,
token buckets are updated for three cases in the conventional method. Since we remove

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 59, Pub. date: May 2017.

Scalable Bandwidth Shaping Scheme via Adaptively Managed Parallel Heaps in Manycore 59:7

Fig. 2. Illustration of the difference between the (a) periodic fill scheme and (b) event-driven fill scheme.

periodic fills, the only case in which we update a token bucket after initialization is when
we schedule a packet. However, because we do not fill the token bucket regularly, we
should provide a method to make the token bucket positive when it becomes negative,
that is, a queue is unschedulable. To achieve this, we compute a reschedule time that
makes the token bucket of an unschedulable queue positive and put the associated
output queue number and the reschedule time into a heap data structure that is sorted
based on the reschedule time. As time progresses, the unschedulable queue (in the
heap) that has the smallest reschedule time that is smaller than the current time is
deleted from the heap, woken up, and becomes schedulable again. We call this method
an event-driven token fill.

Figure 2 illustrates the difference between the periodic and event-driven fill schemes
in terms of token bucket updates. Initially, at time T0, a token bucket is initialized to
100B. A periodic fill scheme fills 100B at an interval of �T . At time T1 = 1

2�T + T0,
a 300B packet is scheduled and reduces its token bucket to −150B because the token
bucket value at T1 is 150B and the number of bytes scheduled at T1 is 300B.

Next, three fills update the token bucket and increase it back to 100B. On the other
hand, an event-driven fill scheme disables the queue upon a token bucket becoming
negative and computes the reschedule time that allows the token bucket to accumulate
enough tokens to reach a reschedule threshold α. A token bucket is updated only once
when it becomes negative. It is clearly shown that an event-driven fill scheme reduces
memory accesses due to token bucket updates.

The event-driven token fill consists of four steps: initial token fill, token deduction
upon a packet schedule, insertion into a heap, and deletion from a heap. Compared with
the conventional token bucket scheme, a step for the periodic fill is replaced with a step
for insertion into a heap and a step for deletion from a heap, which are described in
Algorithm 1. It describes updating a token bucket and processing a heap after a packet

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 59, Pub. date: May 2017.

59:8 T. Kim et al.

ALGORITHM 1: Token Bucket and Heap Management
1 Loop

/* Packet processing and token update */
2 if A scheduled packet is assigned to Proc j
3 && ready for the transmission then

4 Get the queue number i for a packet ;
5 Perform necessary packet processing ;
6 TBi = min(TBi − Psize + (Tnow − Tlui)×BWi , TBi); /* update token bucket */

7 if TBi<0 then
8 Tdelay = αi−TBi

BWi
;

9 Tresch = Tnow + Tdelay ;
10 Tlui = Tresch ;
11 TBi = αi ;
12 Disable queuei ;
13 Insert(heapj, i, Tresch) ;
14 end
15 end

16 while reschedule time of root <current time do
/* repeat the deletion until all roots with smaller schedule time
exhausted. */

17 i = Delete(heapj) ;
18 Enable queuei ;
19 end
20 EndLoop

is selected by the scheduler for transmission. After general output, packet processing
is performed (lines 4 and 5) and a token bucket is updated in line 6. If a token bucket
becomes negative (or unschedulable) as a result of a packet schedule, the reschedule
time for the queue i is computed by Equations (4) and (5), which are also shown in
lines 8 and 9.

Tdelay = αi − TBi

BWi
(4)

Tresch = Tnow + Tdelay (5)
Tlu = Tresch (6)

TBi = αi (7)

Tdelay is the delay between current time and reschedule time. αi and BWi are the
reschedule threshold value and CIR for queue i, respectively. When TBi becomes neg-
ative, a queue becomes unschedulable. Then, at least tokens as much as −TBi should
be accumulated before it becomes schedulable again. To avoid cases in which the value
of a token bucket switches between negative and zero too often, we use a reschedule
threshold, αi, which is a positive number so that at least αi −TBi bytes are accumulated
before the queue becomes schedulable. Because of this, TBi does not become negative
immediately after being schedulable again. αi−TBi

BWi
becomes Tdelay and it is added to

the current time, Tnow, to determine the reschedule time, as shown in Equation (5).
Finally, TBi is set to αi and the queue is disabled, as shown in lines 11 and 12. A
computed reschedule time is used as a sorting key in the heap and inserted into a heap
(for processor core j) with its queue number, as shown in line 13. At the end of each
packet processing, all queues whose reschedule time is less than the current time are

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 59, Pub. date: May 2017.

Scalable Bandwidth Shaping Scheme via Adaptively Managed Parallel Heaps in Manycore 59:9

Fig. 3. A heap data structure used in the proposed scheme.

made schedulable again, which is shown in lines 16 through 19. A clock that tracks the
current time can be implemented with a simple cycle counter. This event-driven token
fill scheme is much more scalable than periodic fill or WF2 Q because token buckets
rarely become negative for bandwidth controlled flows, such as TCP flows; thus, the
frequency of heap insertions or deletions is usually small.

3.1.2. Heap Data Structure for Sorting Unschedulable Queues. A heap is a binary tree data
structure that contains elements with sorted keys, as shown in Figure 3. A heap is
called a min or max heap according to elements sorted in ascending or descending
order. In the proposed scheme, a reschedule time (RT) value is used as a sorting key.
One useful characteristic of a heap is that a heap of size n that contains n elements can
be allocated as an array of n + 1 elements, as shown in Figure 3. The first element in
the array with index 0 is a special element and stores the current size of a heap. Array
elements from indices 1 through 11 represent real heap elements. Because a heap can
be built with an array, managing heaps has several benefits [Horowits et al. 1992].
First, although a heap is a binary tree technically, we do not need to maintain pointers.
This saves space for nodes significantly. Second, a heap has a very simple traversal
mechanism. Assuming that a node has an index of i, its left and right child can be
accessed using indices of 2i and 2i + 1, respectively, and its parent can be accessed
using an index of � i

2�. This makes tree traversal and node management very simple.
Third, elements are allocated sequentially as an array. Thus, if its maximum size is
predetermined, it can be allocated as a chunk of contiguous memory and can be pinned
in the portion of a cache memory using techniques such as cache locking.

In the proposed scheme, a min heap is used to store the reschedule times of un-
schedulable queues. When a queue becomes unschedulable due to the exhaustion of
tokens, its reschedule time is computed and inserted into a min heap. For instance,
assume that we have 11 elements in the heap, as shown in Figure 3. Upon adding a

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 59, Pub. date: May 2017.

59:10 T. Kim et al.

new queue, it is added to the array element position for index 12. The new queue’s
reschedule time is compared with its parent’s value and the values are swapped if it is
smaller than the parent’s value. The swapping will be repeated until the newly added
queue is placed in the right position of a heap. This process does not require inserting
a new element in an array. The insertion time complexity is O(log(n)), where n is the
number of elements in a heap. The reschedule time of a root is compared with current
time at the end of each packet processing, and a root is deleted from a heap when its
reschedule time is smaller than the current time. Root removal has a time complexity
of O(log(n)). It continues until no node with its reschedule time less than the current
time is found. Again, this process does not require removing an element from an array.
The size of n can affect the performance if it does not fit in the cache of a processor core.

3.1.3. Mapping Parallelized Heaps on Manycores and Optimizing Memory Hierarchy. In the pro-
posed scheme, to speed up the insertion and deletion of a heap, we partition the heap
and map it on parallel processor cores. Insertion into a heap is triggered by scheduling
of a packet. Assuming that a packet is scheduled out of queue i, its packet processing
is performed by a randomly assigned processor core j and is followed by the token
bucket update. The queue number i is inserted into a heap managed by the core j if the
token bucket becomes negative upon a packet schedule. Since the packet is randomly
assigned to processor core j, each core has roughly the same number of unschedulable
queues in its heap.

Partitioning a heap and mapping it on multiple cores offers several important bene-
fits. Each partitioned heap mapped on a single core can process insertion and deletion
of nodes independently with respect to other cores. As long as a node satisfies the
heap property within its own heap, a node may be inserted into any heap. Therefore,
many different partitions can exist and mapping can be flexible depending on the opti-
mization goal, for example, load balancing. Second, heap partitioning does not require
interprocessor communications among cores because insertion and deletion do not de-
pend on operations on other heaps. This independence is a crucial property to relieve
the complexity to maintain cache coherency and a locking mechanism. Third, dividing
n nodes into roughly p groups of n

p nodes can lead to execution time reduction because
the reduced size of data can fit in the data cache for fast access. Finally, once the array
implementing a heap is allocated on the cache, it does not have to be flushed out from
the cache. When a new queue is inserted into a heap or a root is removed from the
heap, only the values written into the array elements change and the current size of
a heap is modified. Thus, cache locking shown in Figure 4 can be effectively used to
allocate the space for a heap. If the size of a locked cache portion is L, L

node size of nodes
are permanently pinned on the cache and guarantee steady performance of insertion
or deletion process. The nodes not covered by the size of L can be allocated dynamically
on the off-chip memory.

3.2. Modeling the Number of Reschedules and the Size of Heaps

3.2.1. Modeling for a Single Queue. Estimating the number of reschedules and the size
of a heap under various configurations and input traffic patterns are crucial in terms
of accessing the performance and cost impact of the proposed solution under various
stressful scenarios. To estimate the number of reschedules generated and the average
size of a heap per processor core, we resort to stochastic modeling. Once the statistics
for the packet size and interpacket arrival time of different flows are collected, we can
use them to estimate the number of reschedules generated (performance overhead) and
the average size of a heap per processor core (memory footprint).

First, we estimate how long a single queue is in the unschedulable state because the
number of queues in the unschedulable state at any given time is the size of a heap. In

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 59, Pub. date: May 2017.

Scalable Bandwidth Shaping Scheme via Adaptively Managed Parallel Heaps in Manycore 59:11

Fig. 4. Parallelized heaps partitioned onto locked cache portion and off-chip memory.

addition, the sum of schedulable and unschedulable periods can be used to compute the
number of reschedules per second. To model the period stochastically, we need to know
the packet size distribution and interpacket arrival time distribution for the queue.

If we denote M as a random variable for the number of reschedules per second, it
can be expressed as

M = 1
N × Tint + α

BW

, (8)

where N is a random variable for the number of packet arrivals making a token bucket
negative and Tint is a constant interpacket arrival time. Calculating the mean and
variance of M is discussed in the Appendix.

The ratio between schedulable and unschedulable periods of a queue determines
the duration of a queue being in a heap. Let R denote a random variable for the ratio
between the schedulable period and the sum of schedulable and unschedulable periods,
as shown in Equation (9). Then, a random variable Y that denotes the chance of a queue
being in the unschedulable state can be expressed in Equation (10).

R = N × Tint

N × Tint + α
BW

(9)

Y =
{

0, 0 ≤ y < R
1, R < y ≤ 1

(10)

The mean and variance of Y are given in Equations (11) and (12), respectively.

E(Y) = 0 × E(R) + 1 × E(1 − R)
= 1 − E(R)

= 1 −
nmax∑
n=1

R × P(N = n) (11)

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 59, Pub. date: May 2017.

59:12 T. Kim et al.

Var(Y) = E(Y 2) − (E(Y))2

= (1 − E(R)) − (1 − E(R))2

= E(R)(1 − E(R)) (12)

The mean and variance of a random variable Y for a single queue are used to estimate
the behavior of many queues in the next section.

3.2.2. Modeling for Many Queues. To illustrate the estimation of the average heap size
per core, we use an example. For 100 processors with 1,000,000 queues, each processor
core is responsible for roughly 10,000 queues. Without losing generality, core j can
process packets for queue 0 to 9,999. If we can assume that each queue sees the
same traffic distribution (i.e., independent identical distribution for packet size and
interpacket delay), we can write the probability density function using the central limit
theorem because the number of queues is huge, for example, 10,000. In general cases,
however, we see nonidentical distributions for the packet size and interpacket delay. If
each queue sees a different distribution for the packet size and interpacket delay, we
can use the Lyapunov central limit theorem to get the probability [Billingsley 1995].
The probability density function for the average heap size is shown in Equation (13),

where X is a random variable for the heap size, σ is
√∑m

i=1 Var(Yi), μi is E(Yi), and m
is the total number of queues per core. The equation indicates that the distribution is
a rapidly decaying exponential function, with its mean equal to the average number of
queues being in the unschedulable state.

P(X) = 1√
2πσ

exp
−(X−∑m

i=1 μi)2

2σ2 (13)

Since a small number of flows represent most flows in terms of packet size and
interpacket distribution, the average heap size can be readily estimated using Equa-
tion (13). Similarly, the estimation for the number of reschedules for many queues can
be done by calculating the mean and variance of M in Equation (8) for representative
queues and using the Lyapunov central limit theorem.

Pathological cases may arise in the proposed scheme and the size of the heap may get
bigger than one that can fit in the locked area of the data cache. This can happen for
unbalanced loads on processor cores or oversubscription of queues. We evaluate how
much these abnormal operating conditions affect the performance by estimating the
number of reschedules and size of heaps for severely overloaded queues in Section 5.2.1.
Our proposed scheme relies on an adaptive threshold control method to deal with this
problem, which will be discussed in the next section.

3.3. Adaptive Reschedule Threshold (α) Control to Isolate Queues
Showing Unideal Behaviors

In the network processor, processor cores often work under a tight budget to pro-
cess packets. Thus, additional processing due to heap management is translated into
less computing resources available for packet processing. Under a normal operating
mode, heap management accounts for a small fraction of total computation. However,
if too many reschedules are generated for a short period or load balancing for heap
processing among cores is broken, heap processing may affect packet processing per-
formance. The proposed scheme adopts an adaptive feedback control loop [Åström and
Wittenmark 2013; Zhang et al. 2002; Kang et al. 2012], which monitors the size of the
heaps and dynamically updates the reschedule threshold, αi, using adaptive feedback
control shown in Figure 5. If too many reschedules are generated, we increase αi. A
larger αi increases the number of packets to be scheduled before the token bucket

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 59, Pub. date: May 2017.

Scalable Bandwidth Shaping Scheme via Adaptively Managed Parallel Heaps in Manycore 59:13

Fig. 5. Adaptive feedback control of reschedule threshold.

becomes negative again. Thus, a longer time elapses between two consecutive resched-
ule generations at the cost of burstiness, which reduces the total number of reschedules.

The proposed adaptive reschedule threshold control scheme uses Equations (14a)
and (14b) to dynamically update the threshold:

αi =

⎧⎪⎨
⎪⎩

γ × αi, δi > δth (14a)

max
(

αi

γ
, αimin

)
, δi <= δth, (14b)

where γ is a multiplicative factor that is multiplied to the reschedule threshold αi, δi
is a current reschedule count for the queue i during a current sampling period, δth is a
threshold value to compare with the current reschedule count, and αimin is a minimum
value of αi. If δi is larger than δth, which indicates that too many reschedules are
generated, a multiplicative factor is multiplied to increase the reschedule threshold.
This will decrease the frequency of reschedules so that cores are not spending too
much computing resources on heap processing. If δi is less than δth, we reduce the
reschedule threshold, αi. We experimentally optimize the parameters for the adaptive
control scheme, such as sampling interval, γ , and δth.

4. EVALUATION METHODOLOGY

4.1. Simulation Environment

In general, general-purpose multicore (GPMC) servers are not adequate to generate
input packet traffic, schedule packets, process token buckets, and evaluate metrics.
First, in routers, packets (input traffic) are generated externally and arrived at routers
while conforming to various interpacket delay and packet size distribution models.
The input packets are processed by a memory controller and a scheduler as soon as
they enter the router. However, in GPMC servers, packets are usually accumulated
and processed in burst for efficiency by the OS. Thus, the token bucket management
code running on these servers cannot see the interpacket delays that a router can
see. Second, we use various metrics, such as the number of DRAM accesses, power
consumption of the memory system, and heap processing time with various cache
configurations. These are not easily measured by GPMC servers.

For this reason, an in-house event-driven simulator is implemented to simulate vari-
ous configurations and test vectors at a higher speed, which can complement slow and
accurate simulation with multicore or manycore processor simulators (e.g., GEM5). The
simulator consists of an input traffic generator, processor cores performing token bucket
updates and heap processing, and loggers, as shown in Figure 6. Knobs to control vari-
ous input types and architectural parameters are provided. Various statistics—such as
the number of reschedules, size of heaps, schedulable and unschedulable periods—are
collected. The simulator also generates a memory trace file that logs memory opera-
tions due to heap insertion and deletion operations. These memory trace files are used
for the DRAMSim2 simulator [Rosenfeld et al. 2011] to accurately measure the static
and dynamic power consumption.

In addition to the event-driven simulator, we implement a cycle-accurate simulator
using GEM5 [Binkert et al. 2011; Martin et al. 2005] and verify the functionality

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 59, Pub. date: May 2017.

59:14 T. Kim et al.

Fig. 6. An event-driven simulator.

and performance in a cycle-accurate environment. The simulator is configured to have
processor cores running at 1GHz and each core has a 2-way 32KB first-level instruction
and data cache. In addition, we implement cache locking to lock down 2KB, 4KB, and
8KB of the first-level data cache for heap data and measure the execution time in cycles
and the number of cache misses for both insertion and deletion operations. To verify
our proposed method, we implement the code described in Algorithm 1. We sweep
the number of queues covered by one core from 1 queue to 10,000 queues. The size
of each heap element is 8B to store a reschedule time and a queue number. We insert
GEM5 instructions (e.g., m5_reset_stats and m5_dump_stats) into the code to measure
statistics for inserting (deleting) an element into (from) the heap.

4.2. Metrics

Key metrics are defined and used to access the impact of performance and cost and
confirm viability. First, the number of DRAM accesses is used to compare a periodic and
event-driven fill scheme in terms of external memory accesses. Second, to determine the
performance impact of the proposed scheme on packet processing, we use the number
of reschedules per second per core and execution time for an insertion or a deletion
operation. Each reschedule generates one insertion and one deletion operation. Thus,
multiplying these two factors shows the performance impact. Third, the size of a heap
per core is used to determine the footprint of memory usage by the heap. The size of a
heap also affects performance, as it increases tree traversal time and cache misses.

4.3. Input Setting

The simulator has various knobs to control inputs and architectural parameters, includ-
ing packet size distribution, average bandwidth, including overload factor, interpacket
delay distribution, reschedule threshold, number of queues, and number of processor
cores. In various experiments, we vary the input load. Input load of 1 indicates that
the bandwidth of an input flow matches the output bandwidth allocated to its queue.
However, depending on the packet size and interpacket delay distribution, overload
can fluctuate temporarily and becomes larger than 1. The overload factor of a queue is
defined as follows.

Overload = Input rate
Output rate

(15)

= Average packet size
Average interpacket delay × queue scheduling bandwidth

(16)

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 59, Pub. date: May 2017.

Scalable Bandwidth Shaping Scheme via Adaptively Managed Parallel Heaps in Manycore 59:15

Table I. IMIX Packet Size Distribution

Packet Size Distribution Ratio (%)
28B 1.20
40B 35.50
44B 2.00
48B 2.00
52B 3.50

552B 0.80
576B 11.50
628B 1.00
770B 29.50

1420B 3.00
1500B 10.00

For instance, assume that the scheduling bandwidth of a queue is 1Mbps. If the av-
erage packet size is 500B and average interpacket delay is 1ms, its overload factor is
500bytes ∗ 8bits/byte

1 msec×1 Mbps = 4.
For the packet size, we use internet MIX (IMIX) [Agilent 2007] and uniform distri-

bution from 40B to 1500B. Packet size distribution for IMIX is shown in Table I.
For the interpacket delay, we use constant delay and exponential distribution. For

exponential distribution, λ is chosen so that 1
λ
, the mean of the exponential distribution

(or the mean of interpacket delays), varies to cause overloading of an output queue from
0.9 to roughly 8 times, whereas the shaping bandwidth of an output queue varies for
different configurations.

In addition, real traces are obtained from CAIDA [2008] and the data are extrapolated
and used to create realistic scenarios.

5. RESULTS

5.1. Scalability Analysis

We measure the number of DRAM accesses, the size of a heap per core, and Heap
Processing Time (insertion and deletion time) to evaluate the scalability of the proposed
method.

5.1.1. Number of DRAM Accesses. The proposed method is compared with a periodic fill
scheme in terms of external DRAM accesses. We compare only DRAM accesses due
to fill operations. Each fill operation in the periodic fill scheme requires two memory
accesses (read-modify-write). In the proposed scheme, there is no fill operation. Instead,
we count the number of DRAM accesses due to insertion and deletion operations.

We configure the interface of a router as 100Gbps and vary the number of queues that
share 100Gbps interface. In a system with 1,000 identical queues, the bandwidth of
each queue is shaped to 12.5MB/s (100Gbps

1000 = 100Mbps). For 1,000,000 identical queues,
the bandwidth of each queue is shaped to 12.5KB/s (100Gbps

1000000 = 100Kbps). Figure 7 shows
the number of read-modify-writes due to periodic fills for different fill periods ranging
from 100μs to 10ms with respect to different number of queues. For 1,000,000 queues,
the number of memory accesses ranges from 2 × 109 to 2 × 1011 for 10s.

Table II shows the number of memory accesses due to insertion and deletion oper-
ations for 10s with respect to different queue numbers for the proposed scheme. The
size of packets is generated based on the Internet Mix, where the average packet size
is set to 515B and interpacket delays are exponentially distributed. The results show
that the number of memory accesses with the locked portion of 8KB cache are from
414900 (1,000 queues) to 45274999 (1,000,000 queues). When we compare the result

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 59, Pub. date: May 2017.

59:16 T. Kim et al.

Fig. 7. Number of read-modify-writes for 10s with respect to different fill periods (from 100μs to 10msec)
and number of queues (from 1,000 to 1,000,000) when the periodic fill scheme is used.

Table II. Number of DRAM Accesses Due to Heap Processing for 10 Seconds
with Respect to Queue Numbers and Locked Cache Size (2KB, 4KB, 8KB)

Number of Queues 1000 10000 100000 1000000

Number of
Accesses

2KB 503500 3896500 14232600 60928300
4KB 483900 3475500 14233500 53088299
8KB 414900 3255100 14274100 45274999

Number of Reschedules 34063 199075 748836 2273204

of the proposed scheme with the periodic fill scheme, the reduction gain ranges from
2 × 109

45274999 = 44.17 to 2×1011

45274999 = 4417.44 for 1,000,000 queues, which shows that the
proposed scheme is much more scalable.

The worst-case memory accesses, 6 million operations per second for 1,000,000
queues and 2KB cache, are possible with one channel DDR 3/4. If 6 million opera-
tions per second land on a single bank, the average latency (1 second

6 million accesses ∼ 166 nsec)
between memory accesses is larger than typical Trc of a DRAM bank. Compared with
the proposed method, the conventional periodic fill scheme does not scale in the case
of 1ms and 100μs refill periods because the bandwidth requirements are not feasible
with current DRAM technologies.

5.1.2. Size of Heaps with Respect to Queue Numbers. This experiment evaluates the size
of a heap per core for different queue numbers from 1,000 to 1,000,000 under internet
packet size mix (IMIX) and exponential distributed interpacket delays.

Figure 8 shows the average and maximum heap size from cores 1 through 100 for
different queue numbers assuming that 100 processor cores are used. A heap grows
and shrinks as unschedulable queues are inserted and deleted. As parallelized heaps
are spread over 100 processor cores, the size of a heap is roughly 630 nodes on average
or 900 nodes at most per core for 1,000,000 queues. Assuming that each node occupies
8B to store the queue number and reschedule time, these numbers are translated
into 8 × 630B, which can fit easily in the data cache. This implies that the heap data
structure may be stored in external SRAM existing in the network processor, although

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 59, Pub. date: May 2017.

Scalable Bandwidth Shaping Scheme via Adaptively Managed Parallel Heaps in Manycore 59:17

Fig. 8. Average and maximum size of a heap per processor core with respect to different number of queues
(packet size = IMIX, interpacket delay = exponential, overload = 1, unit in y axis = number of nodes in a
heap).

Table III. Specification of Memory System in Gem5

Types No cache locking Cache locking
L1 inst. cache 1MB, 512-way 32KB, 2-way
L1 data cache 1MB, 512-way 32KB, 2-way

Main memory
DDR3 1600MHz,1-channel,

2-rank/channel, 8-bank/rank

we have to accurately verify the worst-case heap size. In some pathological case (e.g.,
link failure), all 1,000,000 queues run out of tokens and the worst-case heap size can
be 1,000,000 nodes * 8B = 8MB. This still can be accommodated in external SRAM or
DRAM. The decision to choose between SRAM or DRAM depends on price justification
of using SRAM over DRAM and usable bandwidth and space available in the SRAM or
DRAM module of the memory system.

5.1.3. Heap Processing Time Assuming No Cache Misses. The exact insertion and deletion
times of a queue are measured using a modified GEM5 cycle accurate multi/manycore
simulator. To figure out the performance of codes without any memory effect, we fetch
all heap elements during initialization so that no cache misses occur during insertion
and deletion. The specification of the baseline memory system is shown in Table III.

Tables IV and V show the insertion and deletion times, respectively, for different
queue numbers in cycles under the assumption of an ideal memory system (no cache
misses). Considering packet-processing time ranges from a few thousand to tens of
thousands of cycles, the insertion or deletion time is relatively small. The insertion
time ranges from 27 cycles to 33 cycles, which does not vary much with the heap size.
When an insertion operation adds a new node to the leaf of a heap, it is likely to have a
reschedule time bigger than those in the heap. Thus, swap operations rarely occur and
insertion time remains relatively constant with respect to the number of queues. On
the other hand, a delete operation removes the root node and inserts the largest node
at the leaf into the root. This node traverses a heap all the way to the leaf and causes

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 59, Pub. date: May 2017.

59:18 T. Kim et al.

Table IV. Execution Time for Insertion Operations (In cycles)

Number
Overload factor

of queues 5.15 2.58 1.72 1.29 1.03
100 32.00 32.00 32.00 32.00 32.01

1,000 32.01 32.01 32.01 32.04 32.14
10,000 32.02 32.02 32.02 32.02 32.03

100,000 32.02 32.02 32.02 32.02 32.02
1,000,000 32.28 32.34 32.33 32.21 32.03

Table V. Execution Time for Deletion Operations (in cycles)

Number
Overload factor

of queues 5.15 2.58 1.72 1.29 1.03
100 48.00 48.00 48.00 48.00 48.00

1,000 78.55 74.37 73.90 68.07 49.60
10,000 118.12 114.63 107.92 102.91 74.65

100,000 153.26 151.27 147.20 140.44 110.99
1,000,000 214.32 208.45 198.04 179.00 156.03

Table VI. Execution Time of Insertion and
Deletion Operations with Cache Locking in

Cycles (Packet size = IMIX, Interpacket
Delay = Exponential, Overload Factor = 1.29)

Locking Size Insert Delete
2KB 446.7803 879.8279
4KB 448.5005 787.4605
8KB 449.1315 655.7430

the execution time proportional to the height of a heap. The result shows increased
execution time with increasing number of queues and overload factor because the heap
size increases.

5.1.4. Heap Processing Time With Cache Locking. The performance of insertion and dele-
tion operations with cache locking are measured. Overload factor is set to 1.29 and
1,000,000 queues are used. IMIX and exponential distribution are used for the packet
size and interpacket delay distribution, respectively. Table III shows the specification
of the memory system under cache locking.

Table VI shows the performance of insertion and deletion operations. Unlike the
performance under no cache misses, insertion operations cause relatively large latency,
ranging from 446 to 449 cycles because heap nodes close to the leaf need to be fetched
and half of memory accesses cause cache misses (shown in Table VII). The number
does not vary much with increasing cache locking size since doubling or quadrupling
size does not improve much in terms of the depth of the cached heap. On the other
hand, deletion operationsimprove as the locked cache portion increases since deletion
requires traversal of the entire heap. The execution time for insertion and deletion
operations are tolerable, as the network processor adopts multithreaded cores that can
hide cache misses.

5.1.5. Power Consumption Analysis. Tables VIII and IX show total and dynamic power
consumption for the periodic fill scheme and our proposed scheme, respectively. They
are measured using DRAMSim2 simulations. Total power consumption includes
background (static), refresh, and dynamic power consumption. Dynamic power con-
sumption includes power consumption only for processing read-and-write operations.

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 59, Pub. date: May 2017.

Scalable Bandwidth Shaping Scheme via Adaptively Managed Parallel Heaps in Manycore 59:19

Table VII. Number of Cache Misses and Miss Rates with Different Cache
Locking Sizes (Packet Size = IMIX, InterPacket Delay = Exponential,

Overload Factor = 1.29)

Insert Delete
Locking Average Average Average Average

size miss count miss rate miss count miss rate
2KB 10.17 55.51% 13.91 12.23%
4KB 10.18 55.52% 11.94 10.47%
8KB 10.18 55.48% 9.94 8.72%

Table VIII. Total Power Consumption (in Watts) for the Periodic
Fills and the Proposed Scheme)

Periodic Fill
Number of Queues (10ms period) 2KB 4KB 8KB

10,000 9.34 1.15 1.15 1.15
100,000 10.40 1.17 1.17 1.17

1,000,000 20.84 1.29 1.27 1.21

Table IX. Dynamic Power Consumption (in Watts) for the Periodic
Fills and the Proposed Scheme)

Periodic Fill
Number of Queues (10ms period) 2KB 4KB 8KB

10,000 0.075 0.003 0.003 0.003
100,000 0.761 0.012 0.012 0.012

1,000,000 7.577 0.110 0.087 0.034

For the periodic fill scheme, to accommodate the bandwidth requirement, eight
channels of DDR3 DRAMs are used and each channel has a 64b I/O interface running
at 800MHz. We only include the results from cases in which the refill period is 10ms
because some cases with shorter refill periods (1ms and 100μs) are not feasible. Our
proposed scheme uses only one channel because it provides sufficient bandwidth.

The results for total power consumption show 8.12 (periodic fill vs. 8KB for 10,000
queues) to 17.22 (periodic fill vs. 8KB for 1,000,000 queues) times power reduction. For
the small number of queues, the static power consumption dominates and the improve-
ment seems smaller. Considering the fact that shorter refill periods would consume
even larger power if more channels were to be allocated, our scheme is highly scalable
considering power consumption. When we consider only dynamic power consumption,
the results show up to 222.8 (periodic fill vs. 8KB for 1,000,000 queues) times reduction.

5.2. Evaluating under Various Scenarios

5.2.1. Overloaded Queues. Queues can be oversubscribed. This means that traffic can
come in at a rate higher than the allocated bandwidth assigned to the associated queue.
Figure 9 shows the total number of reschedules generated for all cores and the size
of a heap per processor core for different overload factor values assuming that all
queues are oversubscribed simultaneously (a pathological case). Four lines represent
four different combinations of packet size and interpacket delay distribution.

To validate our stochastic model, we measure the heap size distribution using a
simulator and compare the distribution obtained from our stochastic model. The results
are shown in Figure 10. For the uniform distribution from 40B to 1500B, we use the
overload factor of 1.1, 1.28, 1.54, 1.93, 2.56, 3.85, and 7.7. The overload value simply
represents a case in which a queue is receiving packet traffic whose bandwidth is
larger than its programmed token bucket bandwidth by the specified overload value.
These overload factors are derived values from average packet sizes, interpacket delay,

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 59, Pub. date: May 2017.

59:20 T. Kim et al.

Fig. 9. Total number of reschedules generated and average size of a heap per core with respect to different
overload factors.

Fig. 10. Estimated and simulated heap size distribution per core for 1,000,000 queues (packet size = uniform
(upper), IMIX (lower), interpacket distribution = constant).

interface bandwidth, and total number of queues. The upper plot shows its measured
and estimated average heap size. The bottom plot uses an IMIX packet size distribution.

The difference in the average number of heap sizes between our model and simulated
results for different overload factor values are summarized in Table X. It shows that
the estimation of the model is quite accurate, as the mean of errors is only 2.73%.

5.2.2. Periodically Overloaded Queues. Figure 11 shows how the proposed adaptive con-
trol scheme works when input traffic is overloaded periodically. In this experiment, the
input is not overloaded for first 10s. For the next 10s, the input is overloaded (overload

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 59, Pub. date: May 2017.

Scalable Bandwidth Shaping Scheme via Adaptively Managed Parallel Heaps in Manycore 59:21

Table X. Errors for Heap Size Between the Proposed Model
and Simulation Results

Overload (Uni) 7.7 3.85 2.56 1.93 1.54 1.28 1.1
Errors (Uni) (%) 1.3 2.5 3.3 4.6 3.6 3.0 1.0

Overload (Imix) 5.15 2.57 1.72 1.29 1.1 – –
Errors (Imix) (%) 1.3 2.2 2.5 2.7 4.8 – –

Fig. 11. Reschedule count variation under an adaptive reschedule threshold scheme with respect to different
reschedule count threshold, δth (packet size = IMIX, interpacket delay = exponential, overload = 1 and 3.85).

factor = 3.85). This pattern is repeated during the whole simulation time. The result
shows that a reschedule count increases during overloaded periods. Three lines repre-
sent three different values for the reschedule count threshold, δth, in Equations (14a)
and (14b). When δth is 2, the reactive feedback loop responds aggressively and increases
reschedule threshold αi quickly, which results in less overall reschedule counts com-
pared with two other threshold values 3 and 4. In all cases, the feedback loop forces
the reschedule count to be within δth reasonably well.

5.2.3. Experiments with Real Internet Packet Data. To validate our scheme under realis-
tic scenarios, we run simulations using real Internet packet data. The packet data
are obtained from CAIDA [CAIDA 2008] (The Cooperative Association for Internet
Data Analysis). Statistics for packet data are summarized in Table XI. These data are
collected from two locations (Chicago, San Jose) and each location has two directions
(Dir A, Dir B).

A noticeable difference between IMIX and real data is the average packet size. The
average packet sizes for real data are bigger than IMIX. Table XI has the key statistics
summary for real data, including the number of traffic flows, transmission rate, and
average packet size. Average bandwidths for four different data range from 2.01Mbps
to 2.28Mbps. Since packet data are for relatively small bandwidth interfaces, such as
OC-48 and OC-192, we extrapolate the data and build realistic stressful scenarios.
For instance, a 100Gbps interface is divided by average queue bandwidth determined
from real data to compute the number of queues for the simulations. Because data
do not contain interpacket delay information, we use both constant and exponential

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 59, Pub. date: May 2017.

59:22 T. Kim et al.

Table XI. Summarized Statistics for Packet Flows in Real Packet Data
Collected from CAIDA [2008]

Transmission
rate Flows

Average
bandwidth

Average Packet
Size

Data set bits/s flows/s bits/flow bytes
Chicago
(Dir A)

1370000000 6380 214733.5 642

Chicago
(Dir B)

3410000000 16060 212328.8 882

San Jose
(Dir A)

3690000000 16180 228059.3 852

San Jose
(Dir B)

2570000000 12730 201885.3 759

Table XII. Average Heap Size and Number of Reschedules
in Chicago Direction A

Overload
factor

Constant
Distribution

Exponential
Distribution

TCP UDP
Average
heap size

Number of
Reschedules

Average
heap size

Number of
Reschedules

0.9 1.03 432.3 3457993 411.7 3127650
0.9 1.29 543.7 4368243 485.5 3718001
0.9 1.72 658.9 5298872 566.4 4356358
1.0 1.03 1162.0 9325105 919.5 7115239
1.0 1.29 1265.8 10148546 1020.1 7892747
1.0 1.72 1378.1 11025129 1115.0 5837917
1.1 1.03 1664.6 13278297 1396.2 10789900
1.1 1.29 1789.9 14242481 1493.9 11537981
1.1 1.72 1886.4 14978966 1583.2 12218941

distribution. Although we have performed experiments with data from two locations
and various TCP and UDP traffic ratios, we show the result from only one experiment
due to the size limit of this article.

In the experiment, we divide flows into TCP and UDP flows whose ratio mimics
the ratio in real data. TCP approximately constitutes over 90% of packets in both
Chicago and San Jose. We vary TCP average overload factor from 0.9 to 1.1 while UDP
overload factors are set to slightly higher values (from 1.03 to 1.72), indicating some
congestion. Table XII shows average heap sizes and the number of reschedules with
respect to different TCP and UDP overload factors. The difference from our synthetic
IMIX distributions is that both average heap size and reschedule counts are increased.
To identify the cause of the difference, we compare an average queue occupancy during
an unschedulable period, an average negative value for a token bucket (upon a queue
being unschedulable), and an average packet size, which are shown in Table XIII.
When the average overload is 1, the input bandwidth of a flow matches the scheduling
bandwidth; thus, a queue may not have to go into an unschedulable state. However,
a queue can be overloaded temporarily and makes the token bucket negative. This
behavior gets amplified in real data compared with IMIX because the average negative
value for a token bucket, average packet size, and average queue occupancy are larger
than those for IMIX.

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 59, Pub. date: May 2017.

Scalable Bandwidth Shaping Scheme via Adaptively Managed Parallel Heaps in Manycore 59:23

Table XIII. Compare Internet MIX with Real Packet Data
(Number of Queues = 460000, α = 3000, Interpacket

Arrival Time = Constant, Simulation Time = 1s)

Statistic IMIX Chicago Dir A
Output

queue occupancy
529.3 775.0

Average
negative value

for token bucket
−312.3 −383.6

Average packet size (bytes) 515 642

Fig. 12. Number of reschedule generated per queue and size of a heap per core with respect to different
threshold values under severe congestion (overload = 1.29).

Using the information from real traces, we also measure the average packet de-
lays to compare the proposed scheme with the conventional periodic fill scheme (token
refill period = 1ms). In this test, we set the overload factor to 0.9˜0.95 so that the
long-term average input bandwidth is smaller than the output bandwidth, which is a
realistic setting in real routers/switches to guarantee reasonable packet delays. How-
ever, short-term overload happens due to back-to-back large packets under exponen-
tially distributed interpacket delays and uneven distribution of packets over different
queues. The simulation shows that average packet delays are 0.861ms (overload = 0.9)
and 3.05ms (overload = 0.95) for the proposed scheme and 1.06ms (overload = 0.9)
and 3.60ms (overload = 0.95) for the conventional periodic fill scheme. Considering the
large number of slow queues (e.g., 460,000 queues) consisting of best-effort IP traffic,
the refill period of 1ms for the periodic fill scheme fills the token slowly and causes
slightly larger average delays than the proposed scheme.

5.3. Parameter Optimization: Number of Reschedules and Size of a Heap
with Respect to the Reschedule Threshold (α)

In this experiment, we sweep the reschedule threshold value α to see its impact on
the number of reschedules and the size of a heap. The upper plot of Figure 12 shows
the number of reschedules generated per queue for 10s (overload factor is set to 1.29)

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 59, Pub. date: May 2017.

59:24 T. Kim et al.

for different reschedule threshold values from 500B to 4500B. The lower plot shows
the average heap size per core during this simulation. The number of reschedules
monotonically decreases as we increase the reschedule threshold α because the higher
reschedule threshold increases the time for a queue to exhaust all tokens and reduces
the reschedule frequency. Similarly, the heap size decreases with increasing α. A heap
size is determined by the ratio between the schedulable and unschedulable time of a
queue. If the schedulable periods of queues get bigger with respect to the unschedulable
periods, the heap size is reduced. When a reschedule threshold increases, it increases
schedulable periods because it takes longer to consume all tokens.

5.4. Cost of Proposed Method

We evaluate additional complexity due to the use of parallel heaps. The complexity
of a software method can be assessed in terms of memory space used by the major
data structure. Memory space needed in the conventional periodic fill method includes
storage space for the token bucket, bandwidth, maximum burstiness per queue, and
last update time. In the proposed scheme, we need a data structure to store a queue
number and a reschedule time per heap element. In addition, we need one reschedule
counter, for example, 4b per queue, which can be integrated with other preexisting
per-queue data structure.

6. CONCLUSION AND FUTURE WORK

We propose a scalable software-based token bucket management scheme that can re-
duce memory accesses and power consumption significantly. To process tens of millions
of token fill events per second under real-time and low-cost constraints, we propose
novel parallelized heap data structures running on a manycore-based network proces-
sor. In addition, we quantitatively analyze the performance and memory footprint of
the proposed software scheme using stochastic modeling. More specifically, we use the
Lyapunov central limit theorem to accurately estimate the performance and cost of
processing a large number of events to predict the behavior of a system under various
different operating conditions. This stochastic modeling technique can be applied to
model resource access behavior in manycore-based processor design. We have shown
that the proposed scheme reduces the memory accesses by up to three orders of magni-
tude compared with periodic fills and effectively works with severely congested queues
using the proposed adaptive reschedule threshold management scheme.

We are currently extending the proposed scheme to build compressed heaps for better
memory footprints and studying trade-offs between processing power and memory
usage. In addition, we plan to enhance the proposed scheme with various load balancing
schemes based on the prediction of overloaded periods of queues.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.

REFERENCES

A. Aeron. 2010. Fine tuning of fuzzy token bucket scheme for congestion control in high speed networks.
In 2nd International Conference on Computer Engineering and Applications (ICCEA’10), Vol. 1. IEEE,
170–174.

Agilent. 2007. The Journal of Internet Test Methodologies. Retrieved April 14, 2017 from https://intl.
ixiacom.com/sites/default/files/resources/test-plan/agilent_ journal_of_internet_test_methodologies.pdf.

Salman A. AlQahtani. 2015. Token bucket fair scheduling algorithm with adaptive rate allocations for
heterogeneous wireless networks. Wireless Personal Communications 84, 2, 801–819.

K. J. Åström and B. Wittenmark. 2013. Adaptive control (2nd. ed.). Courier Corporation, North Chelmsford,
MA, US.

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 59, Pub. date: May 2017.

https://intl.ixiacom.com/sites/default/files/resources/test-plan/agilent journalofinternettestmethodologies.pdf
https://intl.ixiacom.com/sites/default/files/resources/test-plan/agilent journalofinternettestmethodologies.pdf

Scalable Bandwidth Shaping Scheme via Adaptively Managed Parallel Heaps in Manycore 59:25

N. Beheshti, E. Burmeister, Y. Ganjali, J. E. Bowers, D. J. Blumenthal, and N. McKeown. 2010. Optical
packet buffers for backbone internet routers. IEEE/ACM Transactions on Networking 18, 5, 1599–1609.
DOI:http://dx.doi.org/10.1109/TNET.2010.2048924

J. C. R. Bennett and H. Zhang. 1996. WF 2 Q: Worst-case fair weighted fair queueing. In INFOCOM’96.
Proceedings of the 15th Annual Joint Conference of the IEEE Computer Societies. Networking the Next
Generation. Vol. 1. IEEE, 120–128.

P. Billingsley. 1995. Probability and measure (3rd. ed.). John Wiley & Sons, New York, NY.
N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna,

S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. 2011. The gem5 simulator.
ACM SIGARCH Computer Architecture News 39, 2, 1–7. DOI:http://dx.doi.org/10.1145/2024716.2024718

The CAIDA. 2008. Statistical information for the CAIDA Anonymized Internet Traces. Retrieved April 14,
2017 from http://www.caida.org/data/passive/passive_trace_statistics.xml.

M. Campoy, A. P. Ivars, and J. Busquets-Mataix. 2001. Static use of locking caches in multitask preemptive
real-time systems. In Proceedings of IEEE/IEE Real-Time Embedded Systems Workshop (Satellite of
the IEEE Real-Time Systems Symposium).

Veena S. Chakravarthi and M. Shilpa. 2013. Ingress flow based triple token bucket traffic control system for
distributed networks. In Proceedings of International Conference on VLSI, Communication, Advanced
Devices, Signals & Systems and Networking (VCASAN-2013). Springer, 435–441.

Cisco. 2011. Cisco asr 9000 series ethernet line cards. Retrieved April 14, 2017 from http://www.cisco.
com/en/US/prod/collateral/routers/ps9853/data_sheet_c78- 501338.pdf.

Cisco. 2014. The Cisco flow processor: Cisco’s next generation network processor. Retrieved April 14, 2017
from http://www.cisco.com/c/en/us/products/collateral/routers/asr-1000-series-aggregation-services-
routers/solutionoverviewc22-448936.pdf.

R. Ennals, R. Sharp, and A. Mycroft. 2005. Task partitioning for multi-core network processors. In Compiler
construction. Springer, 76–90.

M. A. Franklin, P. Crowley, H. Hadimioglu, and P. Z. Onufryk. 2003. Network Processor Design, Volume 2:
Issues and Practices. Morgan Kaufmann, San Francisco, CA.

R. Giladi. 2008. Network processors: architecture, programming, and implementation. Morgan Kaufmann,
Burlington, MA.

S. Han, K. Jang, K. Park, and S. Moon. 2010. Packetshader: A GPU-accelerated software router. ACM
SIGCOMM Computer Communication Review 40, 4, 195–206. DOI:http://dx.doi.org/10.1145/1851275.
1851207

E. Horowits, S. Sahani, and S. Anderson-Freed. 1992. Fundamentals of data structures in c. Computer
Science Press.

X. Huang and T. Wolf. 2008. Evaluating dynamic task mapping in network processor runtime sys-
tems. IEEE Transactions on Parallel and Distributed Systems 19, 8, 1086–1098. DOI:http://dx.doi.org/
10.1109/TPDS.2007.70806

Intel. 2005. Intel IXP2800 and IXP2850 network processors. Retrieved April 14, 2017 from http://int.
xscale-freak.com/XSDoc/IXP2xxx/27853715.pdf.

H. Jeon, W. H. Lee, and S. W. Chung. 2010. Load unbalancing strategy for multicore embedded processors.
IEEE Transactions on Computers 59, 10, 1434–1440. DOI:http://dx.doi.org/10.1109/TC.2009.181

V. Jeyakumar, M. Alizadeh, D. Mazières, B. Prabhakar, A. Greenberg, and C. Kim. 2013. EyeQ: Practical
network performance isolation at the edge. In 10th USENIX Symposium on Networked Systems Design
and Implementation (NSDI’13). 297–311.

W. Kang, S. H. Son, and J. A. Stankovic. 2012. Design, implementation, and evaluation of a QoS-aware
real-time embedded database. IEEE Transactions on Computers 61, 1, 45–59. DOI:http://dx.doi.org/
10.1109/TC.2010.240

J. Kidambi, D. Ghosal, and B. Mukherjee. 2000. Dynamic token bucket (DTB): A fair bandwidth allocation
algorithm for high-speed networks. Journal of High Speed Networks 9, 2, 67–87.

M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, and
D. A. Wood. 2005. Multifacet’s general execution-driven multiprocessor simulator (GEMS) toolset. ACM
SIGARCH Computer Architecture News 33, 4, 92–99. DOI:http://dx.doi.org/10.1145/1105734.1105747

C. Networks. 2013. OCTEON III CN78XX Multi-Core MIPS64 Processors. Retrieved April 14, 2017 from
http://www.cavium.com/pdfFiles/CN78XXPBRev1.0.pdf?x=1.

A. K. Parekh and R. G. Gallager. 1993. A generalized processor sharing approach to flow control in integrated
services networks: the single-node case. IEEE/ACM Transactions on Networking 1, 3, 344–357.

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 59, Pub. date: May 2017.

http://dx.doi.org/10.1109/TNET.2010.2048924
http://dx.doi.org/10.1145/2024716.2024718
http://www.caida.org/data/passive/passive_trace_statistics.xml
http://www.cisco.com/en/US/prod/collateral/routers/ps9853/datasheetc78- 501338.pdf
http://www.cisco.com/en/US/prod/collateral/routers/ps9853/datasheetc78- 501338.pdf
http://www.cisco.com/c/en/us/products/collateral/routers/asr-1000-series-aggregation-services-routers/solutionoverviewc22-448936.pdf
http://www.cisco.com/c/en/us/products/collateral/routers/asr-1000-series-aggregation-services-routers/solutionoverviewc22-448936.pdf
http://dx.doi.org/10.1145/1851275.1851207
http://dx.doi.org/10.1145/1851275.1851207
http://dx.doi.org/10.1109/TPDS.2007.70806
http://dx.doi.org/10.1109/TPDS.2007.70806
http://int.xscale-freak.com/XSDoc/IXP2xxx/27853715.pdf
http://int.xscale-freak.com/XSDoc/IXP2xxx/27853715.pdf
http://dx.doi.org/10.1109/TC.2009.181
http://dx.doi.org/10.1109/TC.2010.240
http://dx.doi.org/10.1109/TC.2010.240
http://dx.doi.org/10.1145/1105734.1105747
http://www.cavium.com/pdfFiles/CN78XXPBRev1.0.pdf?x$=$1

59:26 T. Kim et al.

E.-C. Park and C.-H. Choi. 2003. Adaptive token bucket algorithm for fair bandwidth allocation in diffserv
networks. In IEEE Global Telecommunications Conference (GLOBECOM’03). Vol. 6. IEEE, 3176–3180.
DOI:http://dx.doi.org/10.1109/GLOCOM.2003.1258822

L. Popa, P. Yalagandula, S. Banerjee, J. C. Mogul, Y. Turner, and J. R. Santos. 2013. ElasticSwitch: Practical
work-conserving bandwidth guarantees for cloud computing. ACM SIGCOMM Computer Communica-
tion Review 43, 4, 351–362.

I. Puaut and D. Decotigny. 2002. Low-complexity algorithms for static cache locking in multitasking hard
real-time systems. In Real-Time Systems Symposium (RTSS’02). IEEE, 114–123. DOI:http://dx.doi.org/
10.1109/REAL.2002.1181567

S. Radhakrishnan, Y. Geng, V. Jeyakumar, A. Kabbani, G. Porter, and A. Vahdat. 2014. SENIC: Scalable NIC
for end-host rate limiting. In 11th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI’14). 475–488.

P. Rosenfeld, E. Cooper-Balis, and B. Jacob. 2011. DRAMSim2: A cycle accurate memory system simulator.
IEEE Computer Architecture Letters 10, 1, 16–19.

M. Shreedhar and G. Varghese. 1995. Efficient fair queueing using deficit round robin. In ACM SIGCOMM
Computer Communication Review, Vol. 25. ACM, 231–242.

P. P. Tang and T.-Y. Tai. 1999. Network traffic characterization using token bucket model. In INFOCOM’99.
Proceedings of the 18th Annual Joint Conference of the IEEE Computer and Communications Societies.
IEEE, Vol. 1. IEEE, 51–62. DOI:http://dx.doi.org/10.1109/INFCOM.1999.749252

Tilera. 2016. NPS-400: 400 Gbps NPU for Smart Networks. Retrieved April 14, 2017 from http://www.
mellanox.com/related-docs/prodnpu/PBNPS-400.pdf.

G. Varghese. 2010. Network algorithmics. Chapman & Hall/CRC, Boca Raton, FL.
X. Vera, B. Lisper, and J. Xue. 2003. Data cache locking for higher program predictability. ACM SIGMETRICS

Performance Evaluation Review 31, 1, 272–282. DOI:http://dx.doi.org/10.1145/885651.781062
R. Zhang, C. Lu, T. F. Abdelzaher, and J. A. Stankovic. 2002. Controlware: A middleware architecture

for feedback control of software performance. In Proceedings of the 22nd International Conference on
Distributed Computing Systems. IEEE, 301–310. DOI:http://dx.doi.org/10.1109/ICDCS.2002.1022267

Received February 2016; revised November 2016; accepted January 2017

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 59, Pub. date: May 2017.

http://dx.doi.org/10.1109/GLOCOM.2003.1258822
http://dx.doi.org/10.1109/REAL.2002.1181567
http://dx.doi.org/10.1109/REAL.2002.1181567
http://dx.doi.org/10.1109/INFCOM.1999.749252
http://www.mellanox.com/related-docs/prodnpu/PBNPS-400.pdf
http://www.mellanox.com/related-docs/prodnpu/PBNPS-400.pdf
http://dx.doi.org/10.1145/885651.781062
http://dx.doi.org/10.1109/ICDCS.2002.1022267

